Skip to main content

YAGNI Software Principle Using C#

 

YAGNI Software Principle Using C# by Ziggy Rafiq



YAGNI Software Principle Using C#

The YAGNI principle, which stands for "You Ain't Gonna Need It," is a software development principle that suggests that you should only implement features when you actually need them, rather than trying to anticipate future requirements. The principle is based on the idea that implementing features that are not currently needed can result in unnecessary complexity, wasted effort, and increased development time.

In practice, the YAGNI principle encourages developers to focus on delivering the minimum viable product (MVP) with only the features that are necessary to meet the requirements at hand. Developers should avoid adding functionality that is not explicitly required by the current project scope or that may be needed in the future but is uncertain.

The YAGNI principle is closely related to the Agile software development methodology, which emphasizes iterative development and continuous delivery of working software. By focusing on delivering only the features that are necessary at the current stage of development, developers can avoid unnecessary work and minimize the risk of delivering a product that does not meet the needs of the users.

Overall, the YAGNI principle encourages developers to stay focused on the task at hand and avoid the temptation to add unnecessary features or functionality. This helps to keep development efforts lean, efficient and focused on delivering value to the users.

Comments

Most Viewed Ziggy Rafiq Blog Posts

How to use Enum Data Values with .Net 6.0 Framework and Entity Framework Core 6

How to use Enum Data Values with .Net 6.0 Framework and Entity Framework Core 6 Overview An Enum (Enumeration) is a group of constants that are read-only value types. By default, the first value of the Enum variable is 0 i.e. Here we will create an Enum of Priorities type with read-only values of Highest, Normal and Low. We will set the read-only values using an integer assigning a number next to the value. By default, the integer value will start with 0. Here we will be assigning the integer value next to the Enum value such as in the below example and we will use a comma (,) to separate the item in the list of Enum(Enumeration).  We create Enum by using the Enum keyword and then using class, interface, and abstract. The reason we use an Enum is to ensure we improve our application performance and improve application readability, and maintainability, and reduces the complexity of the application hence why if you take a look at the example below of Status (NotStarted, Started, Complete

A Complete Guide to Using GUIDs in C# with Code Examples

  Overview In this post, we are looking at GUIDs (Globally Unique Identifiers), which are widely used in C# for generating unique identifiers for objects, entities, and resources in a system. In this post, we'll explore the basics of GUIDs in C#, their advantages, and how to convert strings to GUIDs. In this post, we have used Guid Generator to create the GUID from the following URL Address https://guidgenerator.com/ What is GUID GUID (Globally Unique Identifier) in C# is a 128-bit value that is used to identify objects, entities, or resources in a unique manner across different systems and applications. It is also known as UUID (Universally Unique Identifier) in some other programming languages.   GUIDs are generated using a combination of unique factors such as the MAC address of the network adapter, the current time and date, and a random number. The resulting GUID is a string of 32 hexadecimal digits separated by hyphens, such as "b86f2096-237a-4059-8329-1bbcea72769b&

Primitives Data Types and None-Primitives Data Types in C# with Code Examples

  Overview I wrote this post to provide an explanation of primitive and non-primitive data types in C#. C# is a strongly typed programming language, where each variable and expression must have a specific data type. C# data types are categorized into two primary groups: primitive data types and non-primitive data types. Primitive data types are the simplest data types available in programming languages. They are typically pre-defined data types and can represent a single value, such as a boolean value, character, or integer. Examples of primitive data types include int, char, float, double, and boolean, which are common in programming languages like C++, C, and Java. Non-primitive data types are also referred to as composite data types or reference data types. They are constructed from primitive data types and are more complex than primitive data types. Non-primitive data types can hold multiple values and allow for the creation of more intricate data structures like tables, lists,